Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(19): 13157-13167, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38655461

ABSTRACT

In heterogeneous catalysis, surface defects are widely regarded as an effective means to enhance the catalytic performance of catalysts. In this study, the oxygen vacancy-rich Mg(1-X)ZnXO solid solution support was successfully prepared by doping a small amount of Zn into MgO nanocrystals. Based on this support, Ru/Ba-Mg(1-X)ZnXO catalyst for ammonia synthesis was prepared. Characterization using TEM, EPR, XPS, and DFT calculations confirmed the successful substitution of Zn atoms for Mg atoms leading to the formation of more oxygen vacancies (OVs). N2-TPD, SEM and TEM analyses revealed that a small amount of Zn had minimal influence on the surface morphology and the size of Ru nanoparticles. The abundance of OVs in the support was identified as the primary factor enhancing the catalytic activity. XPS, H2-TPD and kinetics experiment studies further elucidated the mechanism by which OVs promote the reaction, with OVs serving as an anchor point for the promoter Ba on the MgO support and promoted the dispersion of Ba. This anchoring effect not only enhanced the electron density on Ru, favoring the dissociation of the N[triple bond, length as m-dash]N bond, but also mitigated hydrogen poisoning. As a result,the ammonia synthesis rate reached 1.73 mmol g-1 h-1. Furthermore, the CO2-TPD and H2-TPR analyses indicated that Zn doping effectively promotes the metal-support interaction (MSI) and surface alkalinity. The findings of this study offers valuable insights for the design of defective modified catalyst supports.

2.
J Phys Chem Lett ; 14(31): 7108-7117, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37531457

ABSTRACT

Halide perovskites have attracted considerable interest due to their excellent photoelectric properties. In this study, we synthesized Sb3+-doped Cs2NaTbCl6 using a solvothermal method to investigate its tunable photoelectric properties and low toxicity. Upon Sb3+ ion doping, the photoluminescence yield (PLQY) of Cs2NaTbCl6 significantly increased from ∼1.7 to ∼47%. The introduced Sb3+ ions with ns2 electronic configuration expanded the rare-earth element's absorption cross section, broke intrinsic forbidden transitions, and suppressed nonradiative recombination. Additionally, the codoping of Sb3+ and Mn2+ facilitated efficient energy transfer, resulting in highly efficient photoluminescence. The PLQY of 1%Sb3+,3%Mn2+:Cs2NaTbCl6 reached a remarkable 85.8%, marking the highest reported value for rare-earth double perovskites in the visible light region. This study highlights the vital role of Sb(III) doping as a bridging agent to enhance the emission in rare-earth double perovskites.

3.
Front Microbiol ; 14: 1072228, 2023.
Article in English | MEDLINE | ID: mdl-36876089

ABSTRACT

The cropping system affects the physicochemical property and microbial community of paddy soil. Previous research mostly focused on the study of soil 0-20 cm underground. However, there may be difference in the laws of nutrient and microorganism distribution at different depths of arable soil. In surface (0-10 cm) and subsurface (10-20 cm) soil, a comparative analysis including soil nutrients, enzymes, and bacterial diversity was carried out between the organic and conventional cultivation patterns, low and high nitrogen levels. Analysis results suggested that under the organic farming pattern, the contents of total nitrogen (TN), alkali-hydrolyzable nitrogen (AN), available phosphorus (AP), and soil organic matter (SOM) as well as alkaline phosphatase and sucrose activity increased in surface soil, but the SOM concentration and urease activity decreased in subsurface soil. A moderate reduction of nitrogen applied to soil could enhance soil enzyme activity. It was demonstrated by α diversity indices that high nitrogen levels remarkably undermined soil bacterial richness and diversity. Venn diagrams and NMDS analysis manifested great difference in bacterial communities and an apparent clustering tendency under different treatment conditions. Species composition analysis indicated that the total relative abundance of Proteobacteria, Acidobacteria, and Chloroflexi retained stable in paddy soil. LEfSe results revealed that a low nitrogen organic treatment could elevate the relative abundance of Acidobacteria in surface soil and Nitrosomonadaceae in subsurface soil, thereby tremendously optimizing the community structure. Moreover, Spearman's correlation analysis was also performed, which proved the significant correlation of diversity with enzyme activity and AN concentration. Additionally, redundancy analysis disclosed that the Acidobacteria abundance in surface soil and Proteobacteria abundance in subsurface soil exerted conspicuous influence on environmental factors and the microbial community structure. According to the findings of this study, it was believed that reasonable nitrogen application together with an organic agriculture cultivation system could effectively improve soil fertility in Gaoyou City, Jiangsu Province, China.

4.
Biology (Basel) ; 12(3)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36979088

ABSTRACT

Marine protected areas (MPAs) are vital for protecting biodiversity, maintaining ecosystem integrity, and tackling future climate change. The effectiveness of MPA networks relies on connectivity, yet connectivity assessments are often skipped in the planning process. Here we employed a multi-species biophysical model to examine the connectivity patterns formed among the 21 national MPAs in the Yellow and East China Seas. We simulated the potential larval dispersal of 14 oviparous species of five classes. Larvae of non-migratory species with pelagic larval duration (PLD) were assumed to be passive floating particles with no explicit vertical migration. A total of 217,000 particles were released according to spawning period, living depth, and species distribution, and they were assumed to move with currents during the PLD. Most larvae were dispersed around the MPAs (0-60 m isobaths) and consistent with the currents. Larval export increased with PLD and current velocity, but if PLD was too long, few larvae survived due to high daily mortality during pelagic dispersal. The overall connectivity pattern exhibited a north-to-south dispersal trend corresponding to coastal currents. Our results indicated that the national MPAs in the Yellow and East China Seas did not form a well-connected network and nearly 30% of them were isolated. These MPAs formed three distinct groups, one in the Yellow Sea ecoregion and two in the East China Sea ecoregion. Four MPAs (all in coastal Zhejiang) emerged as key nodes for ensuring multi-generational connectivity. Under the pressure of future climate change, high self-recruitment and low connectivity present significant challenges for building well-connected MPA networks. We suggest adding new protected areas as stepping stones for bioecological corridors. Focused protection of the Yellow Sea ecoregion could have a good effect on the southern part of the population recruitment downstream. Conservation management should be adjusted according to the life cycles and distributions of vulnerable species, as well as seasonal changes in coastal currents. This study provides a scientific basis for improving ecological connectivity and conservation effectiveness of MPAs in the Yellow and East China Seas.

5.
ACS Appl Mater Interfaces ; 14(40): 45725-45733, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36190450

ABSTRACT

Two-dimensional (2D) hybrid layered perovskites (HLPs) have attracted extensive attention due to their excellent optoelectronic properties. Herein, we successfully prepared high-quality Mn-doped BDACdBr4 (BDA = NH2(CH2)4NH2, butylene diammonium) HLP single crystals (SCs). The incorporation of Mn2+ ions modulates the electronic band structure of BDACdBr4 perovskites and tailors the energy transfer process of excited states. A near-unity photoluminescence (PL) quantum yield of 96% from the Mn2+ emission at 608 nm is achieved. Excitation wavelength-dependent spectroscopic characterizations help to clarify the energy transfer mechanism of Mn-doped BDACdBr4, in which competing PL from the 3Eg → 1A1g transition of Cd2+ and the 4T1(G) → 6A1(S) transition of Mn2+ dopants is observed. Temperature-dependent PL spectroscopic characterizations indicate that the efficient energy transfer from BDACdBr4 perovskite host to Mn2+ dopants requires thermal activation to overcome a potential barrier. This work provides new insight into the photophysics and optical properties of 2D HLPs, especially the influence of Mn2+ doping on competing energy transfer in hybrid luminescent materials.

6.
Nanoscale ; 14(38): 14029-14037, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36048093

ABSTRACT

We report the realization of a coupled quantum dot (QD) system containing two single QDs made in two adjacent InAs nanowires. One QD (sensor QD) was used as a charge sensor to detect the charge state transitions in the other QD (target QD). We investigated the effect of the tunneling barrier asymmetry of the target QD on the detection visibility of the charge state transitions in the target QD. The charge stability diagrams of the target QD under different configurations of barrier-gate voltages were simultaneously measured via the direct signals of electron transport through the target QD and via the detection signals of the charge state transitions in the target QD revealed by the sensor QD. We find that the complete Coulomb diamond boundaries of the target QD and the transport processes involving the excited states in the target QD can be observed in the transconductance signals of the sensor QD only when the tunneling barriers of the target QD are nearly symmetric. These observations were explained by analyzing the effect of the ratio of the two tunneling rates on the electron transport processes through the target QD. Our results imply that it is important to consider the symmetry of the tunnel couplings when constructing a charge sensor integrated QD device.

7.
Nanoscale Adv ; 4(12): 2642-2648, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-36132279

ABSTRACT

We report an experimental study of the spin-orbit interaction (SOI) in an epitaxially grown free-standing InAs nanosheet in a dual-gate field-effect device. Gate-transfer characteristic measurements show that independent tuning of the carrier density in the nanosheet and the potential difference across the nanosheet can be efficiently achieved with the use of a dual gate. The quantum transport characteristics of the InAs nanosheet are investigated by magnetoconductance measurements at low temperatures. It is shown that the electron transport in the nanosheet can be tuned from the weak antilocalization to the weak localization and then back to the weak antilocalization regime with a voltage applied over the dual gate without a change in the carrier density. The spin-orbit length extracted from the magnetoconductance measurements at a constant carrier density exhibits a peak value at which the SOI of the Rashba type is suppressed and the spin relaxation due to the presence of an SOI of the Dresselhaus type in the nanosheet can be revealed. Energy band diagram simulations have also been carried out for the device under the experimental conditions and the physical insights into the experimental observations have been discussed in light of the results of simulations.

8.
J Phys Chem Lett ; 13(36): 8529-8536, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36067065

ABSTRACT

A2BIBIIIX6 double perovskites are promising materials due to their outstanding photoelectronic properties and excellent stability in the environment. Herein, we synthesized Mn2+:Cs2NaTbCl6 with dual emission through a solvothermal method for the first time. Mn2+:Cs2NaTbCl6 double perovskites exhibit excellent environmental stability and high photoluminescence quantum yields (PLQYs). The Cs2NaTbCl6 was successfully doped with Mn2+ in two modes: at Mn-feeding concentrations below 1%, Mn2+ first tend to insert into the interstitial void, but if the Mn-feeding concentration exceeds 1%, Mn2+ will further substitute Na+ site of the Cs2NaTbCl6 lattice and thus both two doping modes coexist. After Mn2+ doping, efficient energy transfer from the 5D4 level of Tb3+ ions to the 4T1 level of Mn2+ ions occurs, resulting in tunable dual emission from the Tb3+5D4 → 7FJ=6,5,4,3 transition and Mn2+4T1 → 6A1 transition. Further, LED based on the Mn2+:Cs2NaTbCl6 double perovskites exhibits excellent performance and stability. This work demonstrates a strategy to achieve novel lanthanide-based double perovskites with potential applications in photonics.

9.
J Phys Chem Lett ; 13(31): 7177-7184, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35904436

ABSTRACT

Low-dimensional metal halides are attractive for applications in photodetectors, solid-state lighting, and solar cells, but poor stability is an obstacle that must be overcome in commercial applications. Herein, we successfully synthesized a Ruddlesden-Popper (RP)-phased perovskite Mn2+:Cs3Cd2Cl7 with high photoluminescence quantum yield (PLQY) and outstanding thermal and environmental stability by a solvothermal method. The pristine sample Cs3Cd2Cl7 exhibits a weak cyan broad emission centered at 510 nm with a low PLQY of ∼4%. Once Mn2+ ions are introduced into the host lattice, a bright orange emission peaking at 580 nm with a high PLQY of ∼74% was achieved, which is attributed to the efficient energy transfer from the host to Mn2+ ions and thus results in the 4T1 → 6A1 radiation transition of Mn2+ ions. The photoluminescence (PL) intensity and environmental stability of Mn2+:Cs3Cd2Cl7 can be further improved through A-site Rb alloying. Finally, an orange LED with outstanding color stability was fabricated on the basis of the Mn2+:Cs3Cd2Cl7. Our work successfully elucidates that dopant plays an integral role in tailoring optical properties.

10.
Nanotechnology ; 33(32)2022 May 19.
Article in English | MEDLINE | ID: mdl-35504264

ABSTRACT

Semiconductor InSb nanosheet/hexagonal boron nitride (hBN)/graphite trilayers are fabricated, and single- and double-gate devices made from the trilayers are realized and characterized. The InSb nanosheets employed in the trilayer devices are epitaxially grown, free-standing, zincblende crystals and are in micrometer lateral sizes. The hBN and graphite flakes are obtained by exfoliation. Each trilayer is made by successively stacking an InSb nanosheet on an hBN flake and on a graphite flake using a home-made alignment stacking/transfer setup. The fabricated single- and double-gate devices are characterized by electrical and/or magnetotransport measurements. In all these devices, the graphite and hBN flakes are employed as the bottom gates and the gate dielectrics. The measurements of a fabricated single bottom-gate field-effect device show that the InSb nanosheet in the device has an electron field-effect mobility of âˆ¼7300 cm2V-1s-1and a low gate hysteresis of âˆ¼0.05 V at 1.9 K. The measurements of a double-gate Hall-bar device show that both the top and the bottom gate exhibit strong capacitive couplings to the InSb nanosheet channel and can thus tune the nanosheet channel conduction effectively. The electron Hall mobility in the InSb nanosheet of the Hall-bar device is extracted to be larger than 1.1 × 104cm2V-1s-1at a sheet electron density of âˆ¼6.1 × 1011cm-2and 1.9 K and, thus, the device exhibits well-defined Shubnikov-de Haas oscillations.

11.
BMC Nephrol ; 22(1): 139, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33879076

ABSTRACT

BACKGROUND: Peritoneal dialysis (PD) is a safe and home-based treatment for end-stage renal disease (ESRD) patients. The direct thermal damage of abdominal organs is very rare. CASE PRESENTATION: We report a peritoneal dialysis patient presented abdominal pain and feculent effluent 3 weeks after he instilled hot dialysis solution. In spite of emergency exploratory laparotomy and active treatment, the patient died of septic shock. Biopsy revealed necrosis and perforation of the intestines. CONCLUSIONS: Delayed bowel perforation by hot fluid is very rare. Standardized performance is of the first importance for peritoneal dialysis patients.


Subject(s)
Dialysis Solutions/adverse effects , Hot Temperature , Intestinal Perforation/etiology , Kidney Failure, Chronic/therapy , Peritoneal Dialysis/adverse effects , Abdominal Pain/etiology , Fatal Outcome , Humans , Intestinal Perforation/pathology , Male , Middle Aged , Necrosis/etiology , Shock, Septic/etiology , Time Factors
12.
Nanoscale ; 13(7): 3983-3990, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33595588

ABSTRACT

Quantum dots (QDs) made from semiconductors are among the most promising platforms for the development of quantum computing and simulation chips, and they have the advantages of high density integration and compatibility with the standard semiconductor chip fabrication technology compared to other platforms. However, the development of a highly tunable semiconductor multiple QD system still remains a major challenge. Here, we demonstrate the realization of a highly tunable linear quadruple QD (QQD) in a narrow bandgap semiconductor InAs nanowire via a fine finger gate technique. The QQD is studied by electron transport measurements in the linear response regime. Characteristic two-dimensional charge stability diagrams containing four groups of resonant current lines of different slopes are obtained for the QQD. It is shown that these current lines arise from and can be individually assigned to resonant electron transport through the energy levels of different QDs. Benefitting from the excellent gate tunability, we also demonstrate the tuning of the QQD to regimes where the energy levels of two QDs, three QDs and all four QDs are energetically in resonance, respectively, with the Fermi level of the source and drain contacts. A capacitance network model is developed for the linear QQD and the simulated charge stability diagrams based on this model show good agreement with the experiments. Our work provides solid experimental evidence that narrow bandgap semiconductor nanowire multiple QDs could be used as a versatile platform to achieve integrated qubits for quantum computing and to perform quantum simulations of complex many-body systems.

13.
J Neuroinflammation ; 17(1): 310, 2020 Oct 18.
Article in English | MEDLINE | ID: mdl-33070779

ABSTRACT

BACKGROUND: The major dose-limiting toxicity of paclitaxel, one of the most commonly used drugs to treat solid tumor, is painful neuropathy. However, the molecular mechanisms underlying paclitaxel-induced painful neuropathy are largely unclarified. METHODS: Paw withdrawal threshold was measured in the rats following intraperitoneal injection of paclitaxel. The qPCR, western blotting, protein or chromatin immunoprecipitation, ChIP-seq identification of NFATc2 binding sites, and microarray analysis were performed to explore the molecular mechanism. RESULTS: We found that paclitaxel treatment increased the nuclear expression of NFATc2 in the spinal dorsal horn, and knockdown of NFATc2 with NFATc2 siRNA significantly attenuated the mechanical allodynia induced by paclitaxel. Further binding site analysis utilizing ChIP-seq assay combining with gene expression profile revealed a shift of NFATc2 binding site closer to TTS of target genes in dorsal horn after paclitaxel treatment. We further found that NFATc2 occupancy may directly upregulate the chemokine CXCL14 expression in dorsal horn, which was mediated by enhanced interaction between NFATc2 and p300 and consequently increased acetylation of histone H4 in CXCL14 promoter region. Also, knockdown of CXCL14 in dorsal horn significantly attenuated mechanical allodynia induced by paclitaxel. CONCLUSION: These results suggested that enhanced interaction between p300 and NFATc2 mediated the epigenetic upregulation of CXCL14 in the spinal dorsal horn, which contributed to the chemotherapeutic paclitaxel-induced chronic pain.


Subject(s)
Chemokines, CXC/biosynthesis , Epigenesis, Genetic/drug effects , NFATC Transcription Factors/biosynthesis , Neuralgia/chemically induced , Neuralgia/metabolism , Paclitaxel/toxicity , Animals , Antineoplastic Agents, Phytogenic/toxicity , Base Sequence , Chemokines, CXC/genetics , Epigenesis, Genetic/physiology , Male , NFATC Transcription Factors/genetics , Neuralgia/genetics , Protein Binding/physiology , Rats , Rats, Sprague-Dawley , Up-Regulation/drug effects , Up-Regulation/physiology
14.
Artif Cells Nanomed Biotechnol ; 47(1): 3847-3853, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31556305

ABSTRACT

Aims: In previous studies, numerous differential lncRNAs in cerebral ischemic reperfusion injury were identified using RNA-Seq analysis. However, little is known about whether and how lncRNAs involved in cerebral I/R injury. In this study, we investigated the function and explored the possible mechanism of lncRNA Gm11974 in cerebral I/R injury. Methods: Oxygen glucose deprivation model in N2a cells were utilized to mimic the cerebral I/R injury in vitro. Trypan blue staining, Tunel, JC-1 and cell viability were measured to evaluate the function of lncRNA Gm11974. Dual-luciferase reporter assay was used to explore the potential mechanism of lncRNA Gm11974. Results: Gm11974 was mainly located in cytoplasm. Knockdown of lncRNA Gm11974 alleviated the apoptosis induced by OGD and cell death rates were significantly reduced. We further provided the possible mechanism that Gm11974/miR-766-3p/NR3C2 axis plays important role in cerebral I/R injury. Conclusions: We evaluated the function and mechanism of lncRNA Gm11974 in ischemic brain injury. LncRNA Gm11974 may serve as a potential target for new therapeutic intervention.


Subject(s)
Brain Ischemia/complications , Gene Knockdown Techniques , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Receptors, Mineralocorticoid/metabolism , Reperfusion Injury/prevention & control , Base Sequence , Cell Hypoxia/genetics , Glucose/metabolism , HEK293 Cells , Humans , Oxygen/metabolism , RNA, Long Noncoding/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology
15.
Int Immunopharmacol ; 71: 52-60, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30877874

ABSTRACT

Postoperative cognitive dysfunction (POCD) is one of the most common complications after surgery. Accumulating evidence suggests that postoperative neuro-inflammation plays a critical role in the mechanism of POCD. Recently, exogenous methane is reported to have anti-inflammatory properties and play a neuro-protective role in acute carbon monoxide poisoning injury. Therefore, we investigated the protective effect of methane on a POCD model induced by abdominal surgery and its underlying mechanism in aged mice. Methane-rich saline (MS) or normal saline (NS) (16 ml/kg) was injected intraperitoneally 30 min after the abdominal surgery. The result showed that methane attenuated spatial memory loss in Morris water maze (MWM) with decreasing pro-inflammatory cytokines production and activation of microglia in hippocampus after surgery. Meanwhile, methane treatment suppressed lipopolysaccharide (LPS)-stimulated phosphorylation of MAPKs pathways and its downstream target TNF-α and IL-6 in BV2 cells. Moreover, methane increased expression of IL-10 in the hippocampus 24 h after surgery, and blockade of IL-10 repressed the protective effect of methane on the cognitive impairments observed in MWM test, decreased microglial activation and the pro-inflammatory cytokine in plasma and hippocampal. Blockade of IL-10 abrogated the suppression effect of methane on the pro-inflammatory cytokine production and phosphorylation of NF-κB and p38MAPK both in hippocampus and in BV2 cells. In conclusion, our study suggests exogenous methane could be a novel agent for the therapy of POCD through its anti-inflammation properties.


Subject(s)
Aging/physiology , Cognitive Dysfunction/therapy , Interleukin-10/metabolism , Laparotomy , Methane/therapeutic use , Microglia/drug effects , Postoperative Complications/therapy , Animals , Behavior, Animal , Cells, Cultured , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Interleukin-10/genetics , Male , Mice , Mice, Inbred C57BL , Microglia/pathology , NF-kappa B/metabolism , Neurogenic Inflammation , Signal Transduction/drug effects , Up-Regulation
16.
Elife ; 72018 09 18.
Article in English | MEDLINE | ID: mdl-30226465

ABSTRACT

Fast directional growth is a necessity for the young seedling; after germination, it needs to quickly penetrate the soil to begin its autotrophic life. In most dicot plants, this rapid escape is due to the anisotropic elongation of the hypocotyl, the columnar organ between the root and the shoot meristems. Anisotropic growth is common in plant organs and is canonically attributed to cell wall anisotropy produced by oriented cellulose fibers. Recently, a mechanism based on asymmetric pectin-based cell wall elasticity has been proposed. Here we present a harmonizing model for anisotropic growth control in the dark-grown Arabidopsis thaliana hypocotyl: basic anisotropic information is provided by cellulose orientation) and additive anisotropic information is provided by pectin-based elastic asymmetry in the epidermis. We quantitatively show that hypocotyl elongation is anisotropic starting at germination. We present experimental evidence for pectin biochemical differences and wall mechanics providing important growth regulation in the hypocotyl. Lastly, our in silico modelling experiments indicate an additive collaboration between pectin biochemistry and cellulose orientation in promoting anisotropic growth.


Subject(s)
Elasticity , Germination , Hypocotyl/growth & development , Plant Epidermis/growth & development , Anisotropy , Biomarkers/metabolism , Biomechanical Phenomena , Cell Division , Hypocotyl/cytology , Microtubules/metabolism , Pectins/chemistry , Plant Epidermis/cytology
17.
PLoS One ; 10(2): e0118511, 2015.
Article in English | MEDLINE | ID: mdl-25680004

ABSTRACT

Post-operative cognitive dysfunction (POCD) is a commonly-seen postoperative complication in elderly patients. However, the underlying mechanisms of POCD remain unclear. miRNAs, which are reported to be involved in the pathogenesis of the nervous system diseases, may also affect POCD. In this study, miRNA microarray technology was used to analyze the circulating miRNA expression profile of POCD patients. Among the altered miRNAs, miR-572 had the greatest decrease, which was also verified in vivo in rat POCD model. Further analysis found that miR-572 could regulate the expression of NCAM1 in the hippocampal neurons and interfering miR-572 expression could facilitate the restoration of cognitive function in vivo. Moreover, clinical correlation analysis found that the miR-572 expression was associated with the incidence of POCD. Collectively, miR-572 is involved in the development and restoration of POCD and it may serve as a biological marker for early diagnosis of POCD.


Subject(s)
Cognition Disorders/genetics , Cognition Disorders/psychology , Gene Expression Regulation , MicroRNAs/genetics , Neural Cell Adhesion Molecules/genetics , Postoperative Complications/genetics , Postoperative Complications/psychology , Age Factors , Aged , Animals , Cluster Analysis , Disease Models, Animal , Down-Regulation , Female , Gene Expression Profiling , Humans , Male , RNA Interference , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...